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ABSTRACT 
3. SXA & 

The differences in the moments of inertia of the Moon and its ellip- 
ticity toward the Earth are between fifteen and forty times those 
calculated on a hydrostatic theory. Of possible explanations, the most 
satisfactory explanation is that convection, described by second degree 
harmonics, is occurring. Second order convection implies the existence 
nf 2 smd! mre , ---m&ly r'uuu". km, md r e d t s  in B ~;ew disctssioi~ of &e 
Moon's evolution and thermal history. D-' 

The physics of the interiors of the Moon and the 
inner planets is studied by the application of scientific 
inference to observed quantities: mass, radius, moments 
of inertia, etc. Scientific inference is not a strictly logical 
process like mathematical deduction but is a synthesis 
of observations made with the help of previous research 
experience. The appropriate experience to apply to 
the task of understanding planetary interiors would be 
given by the laws of solid-state physics at high tem- 
peratures and pressures over long time periods. Thus, 
the interiors of planets are imperfectly understood partly 
because of the difficulty of performing laboratory experi- 
ments in this field. Consequently, ideas concerning the 
physical processes within the Earth, inferred from the 
wealth of geophysical observations, should contribute 
much to our understanding. 

Exploration of the interior of the Moon must begin 
with Cassini's three laws, which express to a high degree 
of accuracy observed lunar motion. These laws are as 
follows: 

1. The Moon is a synchronous satellite, which rotates 
at a uniform rate about an axis fixed with respect 
to the Moon; the periods of its rotation and orbital 
motion thus being exactly equal. 

2. The inclination of its axis of rotation to the pole 
of the ecliptic is invariable. This angle is l"32'. 

3. The axis  of rotation of the Moon, the pole of the 
ecliptic, and the pole of the plane of the Moon's 
orbit always lie in one plane, in the order given. 
Figure 1 exhibits these laws of the Moon's motion. 

1 



JPL TECHNICAL REPORT NO. 32-529 

POLE OF ECLIPTIC 

I 

Fig. 1. Cassini’s three laws of motion of the Moon 

The chief inference to be drawn from these laws is 
that the Moon possesses a “bulge” toward the Earth, 
resulting in a difference between the moment of inertia 
C about its polar axis and the moment A about the 

2 

mean axis toward the Earth. The Sun’s gravitational 
action being neglected, the first law could be explained 
by the presence of such a “bulge” and an internal or 
external source of damping sufficient to reduce the “pen- 
dulum” motion to its present imperceptible amount. 
Alternatively, the first law could be explained if tides 
raised in the Moon by the gradient of the Earth‘s grav- 
itational field were displaced from the Earth-Moon axis 
by a small phase angle through failure of the material 
to follow the laws of classical elasticity. The torque 
exerted by the Earth on these tidal bulges would, in 
due course, change the Moon’s rotation to the syn- 
chronous condition. 

The Sun’s chief effect on the Earth-Moon system is 
to exert a torque, because of the inclination of the 
Moon’s orbit to the ecliptic, causing precession of the 
nodes of the orbit (the line of intersection of the orbital 
plane and the ecliptic) in a period of 18.6 years. Al- 
though the Earth‘s equatorial bulge, because its plane 
is inclined to the Moon’s orbit, also results in a similar 
torque, it is negligible in effect compared with the Sun’s 
action. 
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II. DYNAMICAL DETERMINATION OF (C-A)/C 

The most exact determination of the bulge toward 
the Earth is obtained by a dynamical argument based 
on Cassini's laws. (C-A)/B is found to depend on the 
angle of inclination between the axis of rotation and 
the pole of the ecliptic. Let Bo and i be the inclinations 
of the lunar equator and orbit to the ecliptic, respec- 
tively. Let T be the period of the precession of the node 
of the Moon's orbit and t the period of lunar rota- 
tion. Cassini's second and third laws state that the lunar 
axis precesses about the pole of the ecliptic in a cone 
of semiangle Bo in a time T .  Consequently, at any time 
the Moon's axis is moving with angular velocity 2 ~ 6 , / T  
in a plane perpendicular to that referred to in Cassini's 
third law, implying the existence of a torque equal to 
C(277/t) ( 2 d d T )  about an axis perpendicular to the 
plane defined in Cassini's third law. This torque clearly 
arises in the main from the attraction of the Earth on 
the Moon's bulges toward and away from the Earth. 

The gravitational potential V of the Moon at a radial 
distance r from its center of gravity at selenographic coor- 
dinates, colatitude 6' and longitude +, is given by Mac- 
Cullagh's formula V = GMG / r  + G(A + B + C - 3Z)/2r" 
+ . . . where Z is the moment of inertia about the radius 
vector. It can be shown (Ref. 1) that 

longitude. Consequently, the mean torque on the Moon 
equals approximately 

3GM(C-A) ( i  + 6,,)  

Thus, 

2~~ 3 

(C-A)= 8x260Rc 
C 3tTGM(i+ 6 0 )  

Now, Kepler's third law gives 

and if p is the ratio ( t / T )  of the lunar period to the 
period of precession of the node 

Tisserand (Ref. 2)  gives the more exact formula from 
lengthy analysis 

1 v = -  GM + G[(C-A) ( 3 s i n 2 6 c o s Z + - l )  + ( C - B )  (3sin2Bsin2(b-l)  
r 21.3 

We find the gravitational force F acting upon the Earth, 
when it lies in the + = 0 plane at colatitude 6 = 90" 
-C (i + Bo), when the Moon is 90" from the nodes of its 
orbit. The component of F that is perpendicular to the 
Earth-Moon axis is given by 

- 6GM(C -A)  sin ( i  + e,) cos ( i  + e,) - 
2~ ( 4  

where h4 = the Earth's mass. An equal and opposite 
force acts on the Moon, which experiences a gyroscopic 
torque. This vanishes when the Moon is at the nodes 
of its orbit and varies as the square of the sine of its 

3ip 
1 
2 

eo = 
(1 + ,) (2, + p2-3P) (1 + , + - - y y  

where /3 = (C-A)/B, but if p and p2 are neglected with 
respect to 1, the same result as Eq. (1) is obtained, to 
about two significant figures. (C-A)/B is determined 
to be 0.0006279 (Ref. 3). This is often called the dy- 
namical ellipticity; for if the Moon is taken to be an 
ellipsoid of revolution (with its long axis toward the 
Earth), the ratio (C-A)/B is equal to the fractional 
difference between the axes, by Routh's rule. However, 
it is also found that A and B are not equal, and the 
difference may also be found dynamically by the method 
described in the next section. 

3 
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111. DETERMINATION OF (C-B)/A 

A consequence of Cassini’s second law is that the 
north and south polar regions of the Moon are seen, 
preferentially, half a lunation apart, as shown in Fig. 1. 
This is known as the geometrical libration in latitude. 
A further geometrical libration in longitude occurs in 
which the Moon rotates relative to its orbital path and, 
consequently, regions of the limb are alternatively pre- 
sented to the observer, an effect arising from the ellip- 
ticity of the Moon’s orbit. By Kepler’s second law, the 
angular velocity of the radius vector between the Earth 
and Moon, varies inversely as the square of the Earth- 
Moon distance. This means that after traversing that 
part of the orbit farthest from the Earth, the Moon will 
have rotated about its axis more than the angle required 

to keep the same face toward the Earth. Thus, more of 
the east limb will be observed, and vice versa, half a 
lunation later. 

The geometrical libration in longitude thus causes the 
bulge to oscillate monthly with respect to the line of the 
Earth and Moon, and, consequently, there will be an 
additional oscillation due to the attraction of the Earth 
on the Moon’s earthward bulge. This is known as the 
physical libration and has an amplitude of 1 deg. 
Jeffreys (Ref. 3) reviewed the observations, which are dif- 
ficult to obtain but which yield a value of a = ( C - B ) / A .  
Jeffreys found a/j3 = 0.64. Earlier observations have 
given values ranging between 0.49 and 0.78 (Ref. 4 ) .  

IV. OPTICAL DETERMINATION OF THE MOON’S 
NONHYDROSTATIC FIGURE 

Baldwin (Ref. 5 )  considered the apparent displace- 
ment of small sharp craters from the center of the lunar 
disc resulting from the geometrical librations. He sepa- 
rated the points into those of the maria and those of 
the uplands and fitted to each set of points a parabolic 
relation, depending on the distance from the center of 
the disc. In this way he determined that the mean sur- 
face was an ellipsoid, with an ellipticity of 0.00130 
*0.00012 for the uplands and 0.00117 *0.00021 for the 
maria, which corresponds to a bulge of 2.2 km toward 
the Earth. On the basis of 218 more points, Baldw’n 
(Ref. 6 )  revised the value to 1.9 km. 

The reality of this optically determined bulge has 
been doubted, mainly because of the considerable scatter 
in the plotted results. I t  may be simply calculated that 
the angular size of the Airy disc for small telescopes 
used in such studies is about radian, corresponding 
to a distance 0.38 km on the Moon’s surface. A more 
important source of scatter will arise from the irregular 
topography of the lunar surface and also from the varia- 
tions in illumination of the craters. However, none of 

4 

these causes of scatter would appear to be systematic 
over the surface as a whole; consequently, in spite of 
the considerable scatter, the large number of meas- 
urements give a small probable error corresponding to 
about 0.2 km. However, the most convincing argument 
for the reality of the bulge arises from the fact that the 
two values for it, determined from the maria and up- 
lands data, agree within the probable error. Further, 
Baldwin’s method shows that the mean value of the 
height of the uplands is 1.74 km greater than that of the 
maria, showing that the method is capable of detecting 
the existence of an expected mean difference in eleva- 
tion of these two distinctly different surfaces. 

Thus, the bulge toward the Earth is twice that cal- 
culated from the difference in the moments of inertia, 
supposing in the latter calculations the Moon to be an 
ellipsoid of uniform density. We may thus infer that 
the latter assumption is wrong and that the Moon’s in- 
terior is systematically less dense beneath the bulge. It 
is thus seen to be physically meaningless to calculate a 
dynamical ellipticity ( Ref. 1 ) . 
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V. THEORIES OF THE NONHYDROSTATIC FIGURE OF THE MOON 

The hydrostatic theory of the figure of the Moon 
supposes it to act as a fluid under the effects of its 
monthly rotation and the gradient of the Earth’s gravi- 
tational field. Jeffreys (Ref. 7)  shows that, on this 
theory, the radius toward the Earth would be about 
57 m greater than the average radius of the limb and 
that the equatorial radius in the plane of the sky would 
be 16 m less than the polar radius. Thus, if the Moon 
were in hydrostatic equilibrium, it would be, to the 
accuracy we are concerned with, a perfect sphere. In 
attempting to explain the observed bulge, Laplace 
(Ref. 8) and Jeffreys (Ref. 9 )  were both influenced by 
the hypothesis, which seemed entirely secure, that the 
Earth and Moon had once been molten, presumably as 
the result of a gaseous origin, and were, therefore, natur- 
ally led to explanations that the bulge was acquired dur- 
ing solidification. Darwin (Ref. 10) calculated that a 
uniform ellipsoid with a 1 km bulge would have a maxi- 
mum stress difference of 20 bars at the center, and, prior 
to creep studies, it did not seem necessary to question 
that the Moon could have retained this for billions of 
years. 

Laplace argued that during the cooling of a large 
body, in which slight inhomogeneities may exist, strains 
would develop, and he explained the bulge as a natural 
result of these. Jeffreys (Ref. 9) considered the possi- 
bility that it was acquired as the Moon finally solidified 

in an orbit very much closer to the Earth than the pres- 
ent one, where the tidal action of the Earth would be 
much greater. The bulge could have been acquired only 
if the Moon were a synchronous satellite at that time. 
Thus, Kepler’s third law gives the angular velocity of 
the Moon’s rotation as inversely proportional to the 
three-halves power of the Earth-Moon distance. Thus, 
the bulge due to the Moon’s rotation is proportional to 
the cube of the Earth-Moon distance: but the tidal 
bulge has the same dependence. Consequently, Jeffreys’ 
explanation depends on the observed equatorial bulge 
and the earthward bulge having the same ratio as that 
on the hydrostatic model, that is 1:4. The observed 
ratio has not yet been established, as determination of 
the possibie eiiipticity oi the iimb is difficult, p d j i  due 
to the topography. However, the ratio (C-B)/( C-A), 
known as the mechanical ellipticity, is by Routh’s rule 
the required ratio. It is 0.6 to 0.7, as shown above. 

Urey, Elsasser, Rochester (Ref. 11) propose a different 
theory. They suggest that, on the accretion theory, iron 
and stony objects plowing into the Moon’s surface could 
produce differences in density. They require, of course, 
systematically less dense material in the direction toward 
the Earth, and it is clear that this could not be brought 
about by random accumulations, as postulated by the 
accretion theory. 

VI. EXPLANATION OF THE NONHYDROSTATIC SHAPE 
OF THE MOON BY CONVECTION 

Solid-state theory leads one to the conclusion (Ref. 12) 
that self diffusion processes are bound to cause flow 
in solids at the reasonably elevated temperatures, which 
must exist in the Moon if it has even a fraction of the 
radioactivity found in chondritic meteorites. If the bulge 
of the Moon had gradually subsided over 4.6 billion 
years, the flow would have occurred at a rate of strain 

of sec-’. This should be compared with the slowest 
rates of creep (lo-* to sec-l), which are studied in the 
laboratory. Over such lengths of time it seem permis- 
sible to treat the Moon, except for an outer shell in 
which the temperature is much lower, as a fluid in which 
the natural cause of motion will be thermally driven 
convection. The mathematical theory of thermal con- 

5 



I 

JPL TECHNICAL REPORT NO. 32-529 

vection in sphere and spherical shells has been given 
by Chandrasekhar (Ref. 13), who applies the method 
first used by Rayleigh in the study of convection in a 
layer of fluid under a vertical gravitational field. 

The Navier-Stokes equation for steady motion, when 
the velocity 0 is small so that the acceleration term may 
be omitted and when the viscosity is high so that the 
Coriolis force may be neglected, is 

p v 2 v  = grad p + gmpT 

when p is the viscosity, the volume coefficient of ex- 
pansion and p and T the pressure and temperature per- 
turbations, g the gravitational field ( nearly proportional 
to the radius for the Moon, the constant of proportion- 
ality being 4~Gp/3, where p is the nearly uniform density 
of the silicates within the Moon). 

It is possible to expand a solenoidal vector, such as 
v (because the silicates can be treated as incompressible 
up to the pressures experienced in the Moon), in terms 
of toroidal and poloidal vectors. 

Thus, v = curl A where A is a vector potential and then 
A = rU + r,,grad W where U and W are scalar functions 
whence v = r,grad U + curlz rW. The first term is a 
toroidal vector, and the second is a poloidal vector. As 
the toroidal vector is perpendicular to the radial vector, 
it is suitable only for representing rotational motions. The 
convection motions are then given by 

v = curlz rW = grad -(rW) - rV'W (: ) 
The function W is written as a series W, ( r ) S , (  6, +) /  
Z(Z+1) where S1 (e ,  +) is a surface harmonic of degree 1. 

The radial velocity or = W, ( r )S ,  (O ,+) / r .  Application of 
vector calculus (Ref. 14) gives the temperature- 
perturbation. 

where 

or 

where 

Thus, a density deficiency below the Moon's earth- 
ward bulge could arise from a convection pattern de- 
scribed by a second degree harmonic, in which the radial 
velocity would be upward under the bulge and down- 
ward in the limb region. (For the moment, for simplic- 
ity, the limb is supposed to have no ellipticity and 
n = A , )  

It can be shown (Ref. 14) that for a convection pat- 
tern, the W of which is a single harmonic, to satisfy 
boundary conditions regarding pressure, a distortion of 
the surface is required to a height proportional to the 
same harmonic. This can be seen physically, for if the 
viscosity is made infinite the distortion simply results 
from the hotter and less dense columns being extended. 
To a first approximation, this distortion can be replaced 
as a positive surface distribution of matter moS, (e ,+)  
and mlSl (e ,+ )  at the outer boundary r = 1 and the inner 
spherical boundary r = 7 respectively. 

It can now be proved exactly that in order to explain 
the differences in the Moon's moments of inertia the 
convection pattern must be of second degree. The dif- 
ferences in the moments of inertia dC, dB, clA about the 
axes x, y and z and those for a sphere in hydrostatic 
equilibrium, can then be calculated from the following: 

dC r=q  r2 sin2 BpmTS, (6, + ) r 2  sin @d@d+dr 

dB = t r y = '  r2(  1 -sinz 6 sin2 +)paTS, (e, +) 
r=v  

rz sin Ode+ dr 

+ r r ( m l v *  + mo)(1-sin2 Osin2+)S l ( e ,  +) sin ode& 

6 
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It is easy to see that dc, dB, and dA reduce to zero unless S, (e ,+ )  is a zonal 
or sectorial harmonic of second degree. 

dC = 27i[rn1v4 + rn, + paJITr‘ dr]JJ[;(l 0 0  - P 2 ( 8 ) ) ] S I ( 8 ,  +)sin 8 d8d+ 
v 

1 dB = 2=[ m1v4 + m, + p a  J>+ dr] pyn[$, 2 + P 2 (  0 )  ) +S Pi (8 )  c o s  2+] S, (e,+) sin 8 d8 d.4 

where P,, and Pf, are, respectively, the Legendre function 
of second degree and associated Legendre function of 
the second order and second degree. 

This theorem is quite general. Whether convection is 
present or not, the density distribution must contain a 
second degree surface harmonic; or, if the Moon is uni- 
form, its shape must have a second degree term. Goudas 
(Ref. 19) has made a spherical harmonic analysis of the 

Moon’s topography and finds the fourth harmonic to be 
greater than the second. He argues that the former can 
explain the differences in moments of inertia. The above 
analysis shows this to be incorrect. But Goudas does not 
separate the points in the maria and the uplands. As 
Baldwin (Ref. 5) shows these to be different in height, 
Goudas’ analysis obscures the question of the reality of 
the bulge and simply describes the positions of the maria 
and uplands. 

7 I 
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VII. DETERMINATION OF FLOW DIRECTIONS 
WITHIN THE MOON 

The difference between A and B is thus dependent on 
a sectorial harmonic of second degree. A tesseral har- 
monicR= 2, m = 1 makes no contribution to any moment 
of inertia. Let 

Thus, 

and if we take this ratio to be 0.64, 

(3) 
1 + 4p 

p = 0.055 

It is now possible to determine that the velocities over 
any spherical surface within the Moon for the southward 
velocity u along lines of longitude will be proportional to 
dS,( &+)/de, and the eastward velocity v along lines of 
latitude will be proportional to dS, (9,+)/sin 9 d+. 

8 

+ 

and P i (  9 )  = 3 sin29 1 
P 2 ( 9 )  = z(3 cos2e - 1) 

Thus, on any spherical surface within the Moon 

V 9 - [sin28 -2p sin 29 cos 241 
V 
9 

- - 
4p sin 9 sin 2+ 

From this expression the flow pattern is determined and 
plotted on the orthographic projection of the Moon, as 
shown in Fig. 2. It is, however, not unique, as a tesseral 
harmonic P i  could have been included: nevertheless, the 
main features of the motion-an uprising current in the 
center of the disc-are determined. 

8 

Although the main features of the lunar surface are 
meteoritic, as shown by Baldwin (Ref. 5 and 6 ) ,  some 
small domes and lines of small craters may be volcanic. 
A supposed grid system is also held to exist, e.g., by 
Fielder (Ref. 15). Certain linear features are also 
thought to be transcurrent faults. It will be interesting 
to see whether the distribution of such indications of 
internal processes within the Moon bear any relation- 
ship to the flow pattern shown in Fig. 2. However, the 
recognition of these features and their definite separa- 
tion from externally produced features has only just 
commenced (Ref. 6). 

Fig. 2. Zenithal orthographic projection (equatorial case) 
of the Moon showing distribution of horizontal 

velocity-components. lengths of arrows 
are proportional to flow speeds 
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VIII. THE EXISTENCE OF A LUNAR CORE 

Chandrasekhar (Ref. 13) discussed the convection 
pattern produced at marginal stability in a fluid enclosed 
in a spherical shell. He showed that the degree of the 
harmonic which will establish itself is dependent on the 
ratio r ]  of the inner and outer radii. In a fluid sphere a 
first degree harmonic is produced. The second degree 
harmonic convection pattern, which we have inferred to 
exist in the Moon, would establish itself at marginal 
stability only if there is in the Moon a core, the radius 
of which lies between certain limits given by the mathe- 
matical theory. The core surface must be a discontinuity 
and, therefore, must represent a chemical change. By an- 
alogy with the Earth, and bearing in mind the cosmic 
abundance of the elements and the observed frequent 
falls of iron meteorites, an iron core is suggested. An a!- 
ternative explanation is a core formed by a phase change. 

The critical values of the ratio of radii r ]  have been 
computed from Chandrasekhar’s curves (Ref. 16). As the 
core must be small, we may assume that in the Moon the 
gravitational acceleration g is proportional to the radius. 
The critical values then depend only on the boundary 
conditions. The outer crust of the Moon is evidently 
rigid because of its relatively low temperature. As the 
creep processes, which allow flow to occur, are likely to 
depend exponentially on temperature, it seems reason- 
able to suppose that at a certain depth in the Moon flow 
becomes possible. In the Earth, various lines of evidence 
(oceanic heat flow, continental drift, etc.) also implv 
the existence of a surface, about 100 km deep, below 
which slow flow occurs and above which the crust has 

sufficient rigidity to support the topographical features. 
The crust may fracture and produce fault systems. It will 
be shown that in the Moon this rigid crust is likely to be 
thicker. 

Chandrasekhar shows that the critical radii depend on 
whether the outer and inner surfaces are rigid or free. 
As the melting point of iron is less than that of olivine 
over the pressure range within the Moon, we take the 
core surface to be free, i.e., not capable of withstanding 
shearing stress. The core radius then is found to lie be- 
tween 0.06 and 0.36 of the radius of the outer surface 
of the convecting shell. (Had we taken the core to be 
rigid the values would have been 0.02 and 0.31.) 

Such a core has a volume between 0.02 and 4.7% of 
the Moon’s volume. This is satisfactory in that Urey 
gives the uncompressed mean density of the Moon as 3.4 
at ordinary temperatures, and, thus, the mean value of 
the density of the silicates in the Moon under ordinary 
temperatures and pressures would be up to 4y0 less, 
i.e., 3.3. 

A considerable amount is now known about the semi- 
conducting properties of the silicate minerals, particu- 
larly in olivine. Semiconduction seems to vary sharply 
with the amount of ferrous iron (as does the density). 
Measurements of the fluctuating magnetic fields near 
the h4oon could be used to give valuable information 
on the radial variation of its internal electrical conduc- 
tivity as has been done for the Earth. 

IX. GRAVITATIONAL ENERGY RELEASED IN CORE FORMATION 

It is natural to assume that, if the Moon were formed 
by accretion, it began 4.6 billion years ago, with the iron 
uniformly distributed through the silicate. We, therefore, 
must now consider the gravitational energy released by 
the separation of the iron to the center of the Moon. 

Suppose the outer and inner radii of the Moon‘s 
mantle to be R, and RB, respectively. Let the mean 
density of the Moon be pm, (silicate and iron being p a  
and pI respectively), and let the variation of these 
densities with the moderate pressures inside the Moon 

9 
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be neglected. Then the gravitational energy Eo required 
to form the Moon initially would be 

1&r2GpZ R5 
15 

1 1 E I  4nr2pm dr = 

= 3.978 X 1030 joules 

and to form the present core ( 1&r2/15) (Gp12R:). The 
gravitational field in the present mantle of the Moon is 
given by 

Consequently, the energy required to form the present 
mantle of the Moon would be 

Thus, the gravitational energy of the present Moon is 

where R, = 3.476 X los cm 

p, = 3.34 g/cm3 
pl  = 7.78 g/cm3 

1 
10 

If R, equals -- R1, E is equal to 3.981 x 1030 joules. If 

R, equals - R1,E is equal to 4.000 X 1030 joules. If R, 

equals - Rl,E is equal to 4.055 x 1030 joules. Therefore, 
the total energy released in the separation of the core 
from an originally uniform Moon cannot exceed 7.7 x 10” 
joules. 

1 
5 

3 
10 

X. QUANTITATIVE DISCUSSION OF THERMAL CONVECTION 

IN THE MOON’S MANTLE 

The equation of steady, slow motion in the Moon’s 
mantle is the following: 

pvzv = grad p + gpaT 

Where p and T are the pressure and temperature per- 
turbations respectively, v the velocity, g the gravity and 
a the volume coefficient of expansion and p the density. 

Taking the value of the bulge as 2 km and (Y as 
2.10-5/0C we find that the temperature of the upgoing 
stream is systematically greater than that of the descend- 
ing stream by about 50°C. The heat transported by 
convection is of the order of poTv per cm2 where 
u is the specific heat. 

Urey (Ref. 17) gives the total present heat generation 
in chondritic meteorites as 1.6 x lo-’ joule/gm/year and 
2330 joules/gm since 4.5 x lo9 years ago. Thus, if the 
Moon (except for the small core) is assumed to have the 
same radioactivity as the chondritic meteorites, the total 
heat generated in this way, since its origin, would be 
1.7 x lo2@ joules (mass of Moon = 7.36 x loz5 gm), just 
over twice as great as that produced by the separation 
of the core. Thus, the total heat generated in the Moon 
since its origin, on these hypotheses, is 2.5 x 1029 joules. 

On the accretion hypothesis the initial temperature of 
the Moon can be regarded as 0°C throughout, as the 
adiabatic gradient is negligible. Consequently, if no 
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heat escaped, the temperature would have risen to about 
250O0C, and, consequently, the Moon would have melted. 

However, the action of the convection currents in the 
Moon are to keep the temperature roughly constant, for 
the adiabatic gradient in the Moon (which must be ex- 
ceeded if convection is to occur) can be neglected. 
The heat poTv per cm2 carried by the convection cur- 
rents must be conducted through the Moon’s rigid shell 
to escape. 

We will now argue by analogy with the theory of the 
Earth‘s evolution suggested by Runcorn (Ref. 18). It 
can be assumed that initially the Moon’s interior was at 
too low a temperature for the creep processes to be im- 
portant: thus, no convection occurred. Neglecting the 
cooling by conduction, the Moon heated up to 1OOO”C 
at 3 billion years ago when convection began. After 
convection commenced there was a rigid she!! of thick- 
ness d, below which the Moon was at almost uniform 
temperature. We must, therefore, assume that a high 
proportion of the heat generated at present in the Moon 

by radioactivity, about 10” cal/sec, is conducted out 
through the surface (the area of which is 3.5101? cm2). 
Thus, the thermal gradient at the surface of the Moon 
would be less than a quarter that of the Earth 0.3 
microcal/cm’/sec. The temperature gradient in the crust 
of the Moon would, therefore, be about 8”C/km, and, 
consequently, the depth at which flow becomes possible 
would be at least three times greater than in the Earth, 
say 200 km. Here we see a reason why tectonic move- 
ments on the Moon’s surface are so much less in evi- 
dence than on the Earth‘s. The velocity of the currents 
in the mantle of the Moon is easily calculated to be of 
the order of 0.2 cm/yr. 

The viscosity of the Moon will be of the order of 
gpaTLZ/u, where L is the typical length scale of the 
motions. This gives a viscosity of the order of loz3 poise. 
It may be noticed that as the temperature is nearly con- 
siaiii in the convecting region and the pressure varies 
only moderately, a constant value of viscosity is to be 
expected: we are much less sure of this for the Earth‘s 
mantle. 

XI. THE NATURE OF THE UPLANDS 

It is reasonable to conclude that the Moon’s uplands 
are less dense than the Moon’s mantle, for, they must 
be isostatically compensated if the mantle is capable of 
flow. By analogy with the Earth, the density of the up- 
lands is taken to be that of granite, 2.7. Then the mean 
thickness of the uplands is found to be about 9.6 km, 
using Baldwin’s value of 1.74 km as the mean difference 
in height of the maria and uplands. It may be assumed 
that convection has been the fundamental mechanism 

in causing the sialic material to come to the surface. 
Assuming that Swo of the Moon’s surface is covered by 
“continents,” it is simple to calculate that the ratio of 
surface area to mass of mantle of the Moon and Earth 
are in the ratio 1 to 3, roughly that of the thickness 
of the continents on the Moon and Earth. These 
considerations, therefore, show that assigning a 
sialic composition to the uplands would not be un- 
reasonable. 

11 
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XII. CONCLUSIONS CONCERNING THE TEMPERATURE 
DISTRIBUTION IN THE MOON 

Figure 3 shows the inferences drawn in this Report curved. Thus, because in region I11 the temperature 
concerning the temperature distribution within the gradient is negligible, region I1 is where the Moon most 
Moon. I represents the region of rapid rise in tempera- closely approaches the melting point of silicates. The 
ture with depth in which the heat flow is by conduc- question naturally arises whether this is the region from 
tion. 111 represents the region of convection and IV the which the lava comes to produce the maria. If so, the 
core. As in the Earth, there is a region I1 where the maria must have developed much later than has pre- 
temperature-depth curve relation must be sharply viously been considered. 
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